"JAGOAN MATEMATIKA" KELAS 5 SD Sifat-Sifat Bangun dan Hubungan Antar Bangun BAB 6

"JAGOAN MATEMATIKA" KELAS 5 SD Sifat-Sifat Bangun dan Hubungan Antar Bangun BAB 6 - Hallo sahabat Chord Gitar Indonesia, Pada sharing Kunci gitar kali ini yang berjudul "JAGOAN MATEMATIKA" KELAS 5 SD Sifat-Sifat Bangun dan Hubungan Antar Bangun BAB 6, saya telah menyediakan lirik lagu lengkap dengan kord gitarnya dari awal lagi sampai akhir lagu. mudah-mudahan isi postingan kunci gitar yang saya tulis ini dapat anda pahami. okelah, ini dia chord gitarnya.

Penyanyi : "JAGOAN MATEMATIKA" KELAS 5 SD Sifat-Sifat Bangun dan Hubungan Antar Bangun BAB 6
Judul lagu : "JAGOAN MATEMATIKA" KELAS 5 SD Sifat-Sifat Bangun dan Hubungan Antar Bangun BAB 6

lihat juga


    "JAGOAN MATEMATIKA" KELAS 5 SD Sifat-Sifat Bangun dan Hubungan Antar Bangun BAB 6



    Hai semua :-)

         kali ini kak Zainal akan membagikan sedikit ilmu untuk kalian yang sedang duduk dibangku Kelas 5 SD .... semoga kalian dapat menjadi smart (cerdas) setalah membaca artikel ini

    ok langsung saja


    BAB 6: Bangun Datar dan Bangun Ruang SD . . . . . . . . . . Materi Prasyarat •Bentuk bangun datar persegi persegi panjang ...


    Hai !!! sobat belajar 

             kali ini saya akan shere cuplikan hasil belajar saya SEMOGA BERMANFAAT YA....pada kesempatan 
    ini saya mengeSHERE ilmu Matematika yaitu ilmu yang membutuhkan KETELITIAN danKETELATENAN dan yang gak kalah pentingnya dalam mengerjakan soal MTK ini JANGAN TELEDOR 
    seperti misalnya diketahui di soal d = 28 ketika mengerjakan tidak dijadikan r dulu . inilah kesalahan yang fatal  

    ok ini dia hasilnya.......            SEMOGA BERMANFAAT


    A. BANGUN DATAR 


    Image result for PERSEGI 
    SPESIFIKASI

    a. Persegi adalah bangun datar yang memiliki 4 sisi yang sama panjang.b. Mempunyai 4 sudut siku-siku 90⁰.
    c. Mempunyai 2 diagonal yang sama panjang.

    d. Mempunyai 4 simetri putar.  
    e. Mempunyai 4 titik sudut.

    RUMUS 

    Rumus Luas Persegi

     L =    sisi   x   sisi

     Rumus Keliling Persegi

     K  =    4   x   sisi

    B. PERSEGI PANJANG


    Image result for persegi panjang
       SPESIFIKASI

    a. Persegi panjang merupakan bangun datar yang mempunyai 4 sisi.b. Mempunyai 4 sudut siku-siku 90⁰.
    c. Mempunyai 2 diagonal yang sama panjang
    d. Sisi yang berhadapan sama panjang dan sejajar.
    e. Sisi-sisi persegi panjang saling tegak lurus
    f.  Mempunyai 2 simetri putar

      RUMUS

    Luas Persegi Panjang

     L =       p  x   l

    Keliling Persegi Panjang

     K  =       2   x   ( panjang   +   lebar )


    C. SEGITIGA

    Image result for segitiga








    SPESIFIKASI
    • Segitiga adalah bangun geometri yang dibentuk oleh 3 buah (sisi) dan membentuk 3 
    • buah titik sudut 
    • Jumlah sudut pada segitiga besarnya 180⁰ didapat dari penjumlahan 3 sudutnya.
    • Bangun segitiga disimbolkan dengan ∆.


     RUMUS :

    Luas Segitiga

     L =  alas x tinggi
          
                     2

    Keliling segitiga

     K =  sisi 1  +  sisi 2 +   sisi 3 ( JUMLAH SELURUH SISI = AB+BC+CA ) 


    D. JAJAR GENJANG

    Image result for jajar genjang

    SPESIFIKASI 

    a. Jajaran genjang merupakan bangun datar yang mempunyai 4 buah sisi.

    b. Mempunyai 4 sudut, 2 sudut berpasangan dan berhadapan.

    c. Sudut yang saling berdekatan besarnya 180⁰.

    d. Mempunyai 2 diagonal yang tidak sama panjang.

    e. Tidak mempunyai simetri lipat dan simetri putar.

    f. Sisi yang berhadapan sejajar dan sama panjang.
    g. Dua sisi lainnya tidak saling tegak lurus.


    RUMUS : 


    Keliling Jajaran Genjang
     
    K  =       2   x   ( panjang   +   lebar )

     Luas Jajaran Genjang

    L=       alas  x   tinggi


    E. BELAH KETUPAT 


    Image result for BELAH KETUPAT
    SPESIFIKASI :

    a. Belah ketupat merupakan bangun geometri yang dibatasi 4 sisi sama panjang.

    b. Mempunyai 2 diagonal yang berbeda panjangnya.

    c. Mempunyai 4 titik sudut.

    d. Sudut yang berhadapan besarnya sama.

    e. Sisinya tidak tegak lurus.

    f. Mempunyai 2 simeteri putar.


    RUMUS :


     Luas Belah Ketupat

     L=  ½ x diagonal 1 x diagonal 2
     Keliling Belah Ketupat

     K =    4   x   sisi

    F. LAYANG-LAYANG


    Image result for LAYANG LAYANG bamgum datar

    SPESIFIKASI 

    a. Layang-layang adalah bangun geometri berbentuk segiempat yang terbentuk dari dua segitiga  

    b. sama kaki yang alasnya berhimpitan.

    c. Mempunyai 4 sisi sepasang-sepasang yang sama panjang.

    d. Mempunyai 4 buah sudut.

    e. Sepasang sudut yang berhadapan sama besar.

    f. Mempunyai 2 diagonal berbeda dan tegak lurus.

    g. Tidak mempunyai simetri putar


    RUMUS :


    Luas Layang-Layang

    L =     diagonal 1    x   diagonal 2                  
              
                                    2

    Keliling Layang-Layang
    K  =    2  x  ( sisi panjang  +  sisi pendek )


    G. TRAPESIUM

    Image result for trapesium
    SPESIFIKASI 


    Trapesium adalah bangun segiempat dengan sepasang sisi berhadapan sejajar.

    Tiap pasang sudut yang sisinya sejajar adalah 180⁰.

    Jenis-jenis trapesium :a.   Trapesium Siku-SIku          :  mempunyai sudut siku-siku.

    b.    Trapesium Sama Kaki        :  mempunyai sepasang kaki sama panjanga.   

    c.   Trapesium Sembarang        :  mempunyai sisi-sisi yang berbeda.

    RUMUS 

    KELILING TRAPESIUM
    K = alas + sisi miring  sisi miring + sisi atas

    Luas Trapesium 

    L =  (sisi atas + alas)  x   tinggi
          
                                   2



    Image result for lingkaran
    SPESIFIKASI : 

    Lingkaran merupakan kurva tertutup sederhana beraturan.

    Jumlah derajat lingkaran sebesar 360⁰.

    Lingkaran mempunyai 1 titik pusat.

    Mempunyai simetri lipat dan simetri putar yang jumlahnya tidak terhingga.

    Istilah-istilah dalam lingkaran :
    • Diameter lingkaran (d) yaitu garis yang menghubungkan dua titik pada busur lingkaran melalui titik pusat lingkaran. d = 2. r
    • Busur yaitu bagian lingkaran yang dibagi oleh tali busur.
    • Juring yaitu daerah pada lingkaran yang dibatasi oleh 2 jari-jari maupun busur lingkaran. r = 1/2 d
    • Sudut pusat yaitu sudut yang dibentuk oleh 2 buah jari-jari.
    • Jari-jari lingkaran (r) yaitu ruas garis yang menghubungkan titik pada busur lingkaran dengan titik pusat lingkaran.
    • Tali busur yaitu garis yang menghubungkan dua titik pada busur lingkaran dan tidak melewati titik pusat lingkaran.

      RUMUS :

    Busur lingkaran

    Panjang Busur AB  =  besar sudut AOB  X  keliling lingkaran  
                                    
                                                                      360⁰
    luas juring lingkaran

    luas juring AOB  = sudut AOB X luas lingkaran ( jika diketahui sudut lain ( < COD X Luas linkrn)
                                    
                                                     360⁰                                                                               < AOB

               
    Luas Lingkaran

    Luas   =   π   x   jari-jari  x  jari-jari

    Luas   =   π  r2 (kuadrat)
           π  =   3,14 atau ( 22 )
                              
                                        7
            
    Keliling lingkaran

    K =   =  π  x diameter ATAU π x 2 x r           
                 π  =  3,14 atau  ( 22 )
                                              7


    sampai disini dulu ya..... SEMOGA BERMANFAAT 
    jangan lupa guys kirim kan COMENT nya ya......

    TETAP SEMANGAT karena MATEMATIKA gak sulit kok 

    bye..... 

    selanjutnya BANGUN RUANG


          A.  KUBUS

    Image result for KUBUS
       SPESIFIKASI :
    • Kubus merupakan bangun ruang dengan 6 sisi sama besar (kongruen)
    • Kubus mempunyai 8 titik sudut.
    • Jaring-Jaring kubus berupa 6 buah persegi yang SEBANGUN
    • Kubus mempunyai 6 sisi berbentuk persegi.
    • Kubus mempunyai 12 rusuk yang sama panjang.

    RUMUS 

    Luas Permukaan Kubus

    L  =  6 x p x p atau p2 
    L   :  luas permukaan
    p   :  panjang rusuk
      
    Rumus Volume Kubus

    V  =  p x p x p atau p3 




    V   :  Volume

    p   :  panjang rusuk



    B.  BALOK

    Image result for BALOK

    • Balok mempunyai 6 sisi berbentuk persegi panjang.
    • 4 buah rusuk yang sejajar sama panjang.
    • Balok mempunyai 8 titik sudut.
    • Balok mempunyai 3 pasang bidang sisi berhadapan yang kongruen.
    • Balok mempunyai 12 rusuk.
    RUMUS : 

    LUAS PERMUKAAN BALOK

    L  =  2 x [ (p x l) + (p x t) + (l x t) ]
    L   :  luas permukaan
    p   :  panjang balok
    l    :  lebar balok
    t    :  tinggi balok
      

     Volume Balok 

    V  =  p x l x t 
    V   :  volume balok
    p   :  panjang balok
    l    :  lebar balok
    t    :  tinggi balok

    C. LIMAS

    Image result for LIMAS


    a - Limas adalah bangun ruang yang mempunyai bidang alas segi banyak atau n  dan dari bidang alas 


             tersebut dibentuk dari  suatu sisi berbentuk segitiga yang akan bertemu pada satu titik yang membentang keatas 


             b - Nama limas ditentukan oleh bentuk alasnya. misal  limas segi empat maka nama limas itu limas segi empat


    c -Limas beraturan yaitu limas yang alasnya berupa segi beraturan.


    d -  Tinggi limas adalah garis tegak lurus dari puncak limas ke alas limas
            
      Macam-macam bentuk limas :

    a.    Limas segitiga          :  alasnya berbentuk segitiga
    b.    Lima segiempat        :  alasnya berbentuk segi empat
    c.    Limas segilima         :  alasnya berbentuk segilima
    d.    Limas segienam       :  alasnya berbentuk segienam

    rumus sederhana : limas segi  n
                                     
                                      2n buah rusuk, n+1 titik sudut dan sisi
    RUMUS

    LUAS PERUKAAN 

    L = L alas + L sisi tegak  { lihat gambar }

    Rumus Volume Limas

    V =     ( luas alas  x  t )



    D. KERUCUT

                                               RUMUS BANGUN RUANG KERUCUT



    Kerucut merupakan bangun ruang mirip seperti limas tetapi alasnya berupa 


    lingkaran.


    Kerucut mempunyai 1 titik sudut.


    Jaring-jaring kerucut terdiri dari lingkaran dan segi tiga.


    Kerucut mempunyai 2 sisi.


    Kerucut tidak  mempunyai rusuk.



    rumus :

    luas permukaan

      π x r x (r + s) 
      
    volume kerucut


    ket :  π = phi 22  atau 3,14
                       7
       r = jari jari  1 d
                                 2

     s  = garis pelukis s =    √r2 + t2    

      t  = tinggi

    E. LIMAS


                                     Image result for prisma segitiga

    • Prisma merupakan bangun ruang yang alas dan atasnya sebangun  dan sejajar..
    • Prisma terdiri dari prisma segitiga dan prisma beraturan.
    • Prisma segitiga mempunyai bidang alas dan bidang atas berupa segitiga yang kongruen.
    • Prisma segitiga mempunyai 5 sisi.
    • Prisma segitiga mempunyai  9 rusuk
    • Prisma segitiga mempunyai 6 titik sudut
    • Jaring-jaring prisma segitiga berupa 2 segitiga, dan 3 persegi panjang.

    Rumus sederhana : prisma segi n maka rusuk = 3 x n
                                                                              sisi    = n + 2
                                                                       titik sudut = 2 x n

     Luas Permukaan Prisma Segitiga

    L  = 2 x luas alas + keliling alas x tinggi 

    L   :  luas permukaan
    ∆   :  alas dan atas segitiga
    t    :  tinggi prisma
      

    Volume Prisma Segitiga

    V  =  Luas Alas  x  t

    V                     :  Volume
    Luas Alas        :  Luas ∆   =  ( ½ a x t )
    t                        :  tinggi prisma


    F. TABUNG

    Image result for TABUNGImage result for TABUNG

    a .Tabung merupakan bangun ruang berupa prisma tegak dengan bidang alas

        dan atas berupa  lingkaran.

    b. Jaring-jaring tabung tabung berupa 2 buah lingkaran dan 1 persegi panjang.

    c.Tinggi tabung adalah jarak titik pusat  lingkaran alas dengan titik pusat 

    lingkaran atas.

    d. Bidang tegak tabung berupa lengkungan yang disebut selimut tabung.


    Rumus 

    luas permukaan

     L = 2\cdot \pi r\cdot (r + t)

    volume
    V = \pi r^2 \cdot t  atau  v  = \frac{1}{4} \pi d^2 \cdot t

    G. BOLA 


                                        Image result for BOLA GEOMETRI


    a. Bola merupakan bangun ruang berbentuk setengah lingkaran

    b. diputar mengelilingi garis tengahnya,.

    c. Bola mempunyai 1 sisi dan 1 titik pusat.

    d. Bola tidak mempunyai titik sudut dan rusuk

    rumus 

    luas  permukaan

    bola utuh                      setengah bola padat              setengah bola berongga

    L = 4 \pi r^2 \,                    3 π r2 (kuadrat)              2 x π x r2 (kuadrat)     

    volume bola

    bola utuh                      setengah bola padat              setengah bola berongga

    4   π r3 (kubik)        2 x π x r3 (kubik)              2 x π x r3 (kubik)
    3                                   3                                                3



    SAMPAI SINI DULU YAA... SAYA KIRA UDH LENGKAP RUMUSNYA SEMOGA  

    BERMANFAAT 

    DAN DONT FORGET TO COMENT posting saya untuk evaluasi pembelajaran


    byee..........




    Demikianlah Artikel "JAGOAN MATEMATIKA" KELAS 5 SD Sifat-Sifat Bangun dan Hubungan Antar Bangun BAB 6

    Sekian Kunci gitar "JAGOAN MATEMATIKA" KELAS 5 SD Sifat-Sifat Bangun dan Hubungan Antar Bangun BAB 6, mudah-mudahan bisa memberi manfaat untuk anda semua. baiklah, sekian postingan Chord gitar lagu kali ini.

    Anda sedang membaca artikel "JAGOAN MATEMATIKA" KELAS 5 SD Sifat-Sifat Bangun dan Hubungan Antar Bangun BAB 6 dan artikel ini url permalinknya adalah http://arzulinux.blogspot.com/2016/04/matematika-kelas-5-sd-sifat-sifat.html Semoga artikel ini bisa bermanfaat.

    Related Posts :

    1 Response to ""JAGOAN MATEMATIKA" KELAS 5 SD Sifat-Sifat Bangun dan Hubungan Antar Bangun BAB 6"